SOLID STATE PHYSICS 1

- April 2008 -

Do not forget to write your full name and student number on <u>each</u> sheet.

Please use <u>separate</u> sheets for each of the four problems.

Planck's constant	ħ	1.055x10 ⁻³⁴ Js
Planck's constant	h	6.626 x 10 ⁻²⁷ erg s
Boltzmann's constant	k_{B}	1.38x10 ⁻²³ J K ⁻¹
Permittivity of free space	ε ₀	8.85x10 ⁻¹² F m ⁻¹
Permeability of free space	μ_0	$4\pi x 10^{-7} \text{ H m}^{-1}$
speed of light	С	$3.0 \times 10^8 \text{ m s}^{-1}$
elementary charge	е	1.60x10 ⁻¹⁹ C
mass of the electron	m	9.11x10 ⁻³¹ kg
Bohr magneton	μ_{B}	9.27x10-24 J T ⁻¹
Note also: $1 \text{ eV} = 1.6019 \times 10^{-12} \text{ erg}$		

- **I.** The following questions should be answered very briefly (1-2 sentences) [2 points for each question]
- a) In a metal, what is a plasmon? How can it be excited?
- b) Why do nanostructures have different properties from bulk crystals?
- c) What is meant by the cohesive energy of a solid?
- d) What is thermopower? What can we learn from it regarding the charge carriers in a semiconductor?
- e) Define the magnetic susceptibility per unit volume in CGS or SI. What are substances with negative susceptibility called?
- f) What is the necessary condition for a structural phase transition to occur in a crystal?

- g) What determines the electrical resistivity of Cu at room temperature and at 4 K?
- h) What happens when a type 1 superconductor is immerged into a homogeneous magnetic field (H<H_c; T<T_c)? How are H_c and T_c related?
- i) What special property must a crystal have to be called ferroelectric?
- j) Apply Hund's rule to find the angular momentum quantum number, the spin quantum number and the total angular + spin momentum quantum number for Pr³⁺ in the configuration 4f²5s²p⁶. Give also the spectroscopic notation of the ground state.
- II. (a) Name the three most important probes used in diffraction experiments on crystals. What is the one essential condition they must all satisfy? [2 points]
- (b) Calcium crystallizes in a face-centred cubic unit cell with a=0.556 nm. How many atoms does the unit cell contain? How many nearest neighbours does each atom have? [1 point]
- (c) Calculate the distance between the 111 planes in a crystal of Ca. Repeat the calculation for the 222 planes. Which planes are closer? [2 points]
- (d) Derive Bragg's law for the diffraction of radiation by a three dimensional crystal. [2 points]
- (e) At what Bragg angle for diffraction from the 111 planes occur if one uses filtered Cu K_{α} radiation? The wavelength of the radiation is λ =0.15418 nm. [1 points]
- (f) Repeat the calculation for the second order reflection of the 111 planes and for the first order reflection of the 222 planes. What conclusion can be made? [2 points]
- III. (a) Explain what is meant by a phonon, and how they are useful for considering the dynamics and thermal properties of crystals. (No formulae, just description) [2 points]
 - (b) Discuss the interactions that are possible between phonons, and what causes them. [2 points]

(c) The coefficient of thermal conductivity of an insulator is described by the equation

$$\kappa = \frac{1}{3} \lambda v_s c,$$

where λ is the mean free path of the phonon, v_s is the velocity of sound, and c is the specific heat capacity of the material per unit volume.

The heat capacity of an insulator at low temperatures is given by

$$C = \frac{12\pi^4}{5} N k_B \left(\frac{T}{\theta_D}\right)^3,$$

where N is the number of atoms in the sample, k_B is Boltzmann's constant, T is the temperature, and θ_D is the Debye temperature. At high temperatures, C tends towards $3Nk_B$.

The conventional unit cell of diamond contains eight carbon atoms and has a lattice parameter of 0.35567 nm. The Debye temperature of diamond is 2230 K. At 3.75 K, the coefficient of thermal conductivity of diamond is 10 Wm⁻¹K⁻¹, and the velocity of sound is 9200 ms⁻¹.

- i. What is the mean free path of the phonons in the material at this temperature? [2 points]
- ii. As the temperature is raised, how would you expect the mean free path of phonons to change? [2 points]
- iii. How would you expect the thermal conductivity to change as the temperature is raised? [2 points]
- IV. The mean energy of an electron in a metal according to the free electron model is $\bar{E} = (3/5) E_{\rm F}$

where the Fermi energy is given by $E_F = \frac{\hbar^2 (3\pi^2 n)^{2/3}}{2m}$ and n and m are the density and the mass of free electrons respectively.

(a) Using the result dE = - p dV, where E is the total energy of electrons in volume V, derive an expression for the pressure p of the free electron gas. [2 points]

- (b) Hence show, using the appropriate thermodynamic definition, that the chemical potential (the Gibbs free energy per electron) at T=0 is equal to E_F . [2 points]
- (c) Calculate the chemical potential for the free electrons in pure silver, assuming one valence electron is made available per primitive cell, the volume of which is 1.7×10^{-29} m³. [1 point]
- (d) By adding divalent magnesium as an impurity as a concentration of one atom per million atoms of silver, by how much is the Fermi energy altered? [2 points]
- (e) Silicon is an intrinsic tetravalent semiconductor with a band gap of about 1.1 eV. Discuss and explain the change in chemical potential of the electrons brought about by adding pentavalent or tetravalent impurities at a concentration of one atom per million atoms of silicon. Contrast this behaviour with the case of the silver-magnesium alloy just considered. [3 points]